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Restricted curvature model with suppression of extremal height
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A discrete growth model with a restricted curvature constraint is investigated by measuring both the surface
width and the height difference correlation function. In our model, where an extremal height is suppressed, the
surface widthW shows the roughness exponenta'0.561 and the dynamics exponentz'1.69 in one substrate
dimension. However the correlation function has an unusual scaling behavior and produces different wandering
exponenta8'1.33 and its dynamic exponentz8'4. The discrepancy is due to the fact that the correlation

length increases with a power lawt1/z8 until it reaches the value proportional toLd at time ts;Lz, whereL is
the system size andd is the ‘‘window exponent’’ satisfying the relationd5z/z85a/a8. d is a new exponent
to characterize the window size of the system.
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Kinetic roughening of interfaces has been intensiv
studied@1–4# for the last decade or so with the use of bo
analytical continuum growth equations and discrete atomi
numerical simulations. Various dynamic growth universal
classes have been identified for growth models with e
universality class corresponding to a particular continu
growth equation for the coarse-grained height varia
h(x,t), which describes the growing interface as a funct
of the lateral surface coordinatex and growth timet. Sub-
stantial theoretical efforts have gone into classifying the u
versality classes of discrete growth models@1–4#. This is
typically done numerically in a ratherad hoc manner by
measuring the simulated critical growth exponents of the
crete models.

An interesting quantity of the dynamic growth process
the kinetically rough self-affine surface structure. Most
cent work concentrates on studying the surface structur
the growth models, especially on determining the dynam
critical exponents governing the surface fluctuations. The
namic scaling hypothesis is that in a finite system of late
sizeL, the variation or the mean square fluctuationW2 of the
surface height starting from a flat substrate scales as@5,6#

W2~L,t !;L2a f w~ t/Lz!, ~1!

wherea and z are the ‘‘roughness’’ and ‘‘dynamic’’ expo
nents and the scaling functionf w(x) is x2b with the ‘‘growth
exponent’’b5a/z for x!1 and is constant forx@1.

In addition to the surface width, there is another intere
ing quantity called the correlation function, which involve
the square of the height difference in distancer @7,8#,

G~r ,t !5^@h~x,t !2h~x1r ,t !#2&. ~2!

It also shows a scaling behavior

G~r ,t !;r 2a8g„r /j~ t !… ~3!

with the wandering exponenta8 and a correlation lengthj
;t1/z8. The correlation dynamic exponentz8 governs the
correlation length along the surface. For conventional m
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els, the correlation lengthj grows ast1/z8 at the beginning
and eventually saturates at the system sizeL @9#;

j~L,t !;LgjS t1/z8

L
D;H t1/z8 for t1/z8!L

L for t1/z8@L,
~4!

where the scaling formgj(x) is x for x!1 and is constant
for x@1. In this case, it is easy to prove that the values ofa8
andz8 are the same asa andz of the surface width, respec
tively.

Here we introduce a new model named ‘‘suppressed
stricted curvature’’~SRC! model which showsz8Þz. This is
a discrete growth model in restricted curvature~RC! con-
straint where an extremal height is suppressed. For comp
ness, we explain the RC model@10# briefly. The growth rule
of the equilibrium RC model is to randomly select a site
a one-dimensional~1D! substrate and then to take a rando
action between deposition or evaporation~within the solid on
solid condition! with equal probability, provided that the re
striction on the local curvatureu¹2hu5uh(x11)1h(x21)
22h(x)u<2 is obeyed at both the selected site and the ne
est neighbor sites. If this RC condition is not satisfied,
corresponding deposition or evaporation event is forbidd
~No relaxation or hopping of the deposited atom is allow
in the model.! Thus, the model is analogous to the restrict
solid on solid model@7,8# except that the restriction is on th
local curvature¹2h rather than on the height difference. Th
RC model is believed to belong to the fourth-order co
tinuum linear equation

]h~x,t !

]t
52¹4h~x,t !1h~x,t !, ~5!

where theh(x,t) is an uncorrelated Gaussian noise. Th
equation can be solved exactly givinga5a853/2 and z
5z854, i.e.,b53/8 @10,11#.

The rule for the SRC model is the same as that of the
model except a suppression for the global extremal heig
All possible 1D RC configurations are allowed, but the g
bal maximum and minimum sites are biased to move to
©2002 The American Physical Society05-1
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direction of reducing the surface width. This model m
mimic the motion of a step in a vicinal surface where
motion is bounded in two neighboring steps. In equilibriu
these dynamics produce an ensemble of RC surfaces wit
exponentially decreasing weight for increasing surfa
width. We obtain the roughness exponenta'0.561 and its
dynamic exponentz'1.69 by measuring surface widt
W(a8'1.33,L,t). However, the height correlation functio
G(r ,t) shows different scaling exponentsa8'1.33 andz8
'4. The implication of our observation is that the corre
tion lengthj grows ast1/z8 initially and saturates at the valu
js;Ld with d5z/z8'0.423.

The dynamics and equilibrium properties of our model
studied by Monte Carlo simulations with a Metropolis-ty
algorithm. Starting from a flat surface, i.e.,h(x,t)50 for all
x51, . . . ,L at t50, a site is chosen randomly. We try to ad
or subtract the column height by 1 with the same probabi
1/2. Unless the updated height introduces a new extre
height ~new maximum or minimum!, the new configuration
is accepted as long as it satisfies the RC condition. Whe
brings a new extremal height, it increases the absolute
face widthWabs5hmax2hmin11, wherehmax andhmin are
the maximum and minimum heights, respectively. In t
case, the acceptance probability of the new configuratio
reduced by a factor ofpout<1. The equilibrium partition
function of this model is a sum of the weights, (pout)

Wabs,
over all possible RC surface configurations@12,13#. In our
simulation, we choosepout51/2.

We first measure the mean square surface widthW2(L,t)
defined by

W2~L,t !5^@h~ t !2h~ t !#2&, ~6!

and check the validity of Eq.~1! for our model. Here,A and
^A& represent the spatial and the ensemble averages oA,
respectively. With the periodic boundary condition, the fin
size effects are rather strong forW in the feasible system
sizes. For the models with globally constrained dynam
simulations on much larger systems are needed when
periodic boundary conditions are applied even to get
roughness and its dynamic exponents. Therefore, we use
free boundary condition~no RC constraint at the boundary!
and measureW(L,t).

For the roughness exponenta describing the saturation o
the interface fluctuation, we use the relationW2(L);L2a for
the system sizesL532, 64, . . . ,1024 in the steady state re
gime t@Lz. All data fit well with the form of W2(L)
;L2a. From the least squares fit, we get

a50.56160.005. ~7!

To determine the growth exponentb, we measureW2(t)
as a function of time for the system of sizeL52048.
Through the relationW2(t);t2b for early time t!Lz, we
obtain

b50.33260.005 ~8!

and therefore the dynamic exponent
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z5a/b51.6960.05. ~9!

Figure 1~a! shows the mean square widthsW2 as a func-
tion of t for the systems of sizesL532,64, . . . ,512. They
increase algebraically initially (t!Lz regime! and saturate
for t@Lz as expected from Eq.~1!, where there is a satura
tion time ts;Lz. We check the validity of Eq.~1! by plotting
the scaled widthW2/L2a against the scaled timet/Lz. As
shown in Fig. 1~b!, the scaled data collapse to a single cur
with a50.561 andz51.69 supporting the scaling behavio
of Eq. ~1!.

We now turn to the height correlation functionG(r ,t) and
consider its scaling behavior of Eq.~3!. First, we focus on
the short time (t,Lz) behavior of the height correlation
function for a large system size. Figure 2~a! shows the height
correlations G(r ,t) for a system of L52048 at t52,
4,8, . . . ,1024. For a given timet, they increase monotoni
cally with r up to the ‘‘correlation length’’j(t) and then
remain almost constant forr .j(t). The correlation length
j(t) for a given time t is defined as the distance whe
G(r ,t) becomes saturated. When the scaled height corr
tions G(r ,t)/r 2a8 are plotted against the scaled distan
r /t1/z8 with

a8'1.33 and z8'4.0 ~10!

as shown in Fig. 2~b!, the graphs for different times show
perfect data collapse indicating the scaling behavior of
~3! with j(t);t1/z8 for t!Lz,

G~r ,t !;r 2a8g~r /t1/z8!. ~11!

FIG. 1. W2(L,t) for the systems of sizesL532,64, . . . ,512. ~a!
The plot of W2(L,t) as a function oft. ~b! The scaling plot of
W2/L2a againstt/Lz with a50.561 andz51.69 (b50.332).
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Note thatz8 of the SRC model is the same as that of the R
model buta8 is not. It seems that the suppression rule of
extremal height mainly affects the wandering exponenta8.

As shown in Fig. 2~a! G(r ,t) is independent ofr for r
.j(t). Therefore, we expect

g~x!;x22a8, ~12!

for largex. @Smallx behavior ofg(x) will be discussed later.#
Equations~11! and ~12! imply

G~r ,t !;t2a8/z8 ~13!

for r .j(t). On the other hand,G(r ,t) should be propor-
tional to t2b for small t sinceW2(L,t) is so. Therefore, we
get the relation

b5a8/z85a/z. ~14!

Even thougha8 andz8 are different froma andz, the ratio
a8/z8 should be same asa/z. Our numerical data ofa8 and
z8 satisfy the relation very well.

We then move on to the long-time behavior ofG(r ,t). We
monitor the ‘‘saturate height correlation function’’Gs(r )
5G(r ,t@Lz) for the system sizesL564, 128, . . . ,1024. As
shown in Fig. 3~a!, Gs(r ) increases only up to a length sca
js(L) and then remains almost constant forr .js(L). We
call js(L) the ‘‘saturate correlation length’’ or the ‘‘window

FIG. 2. Height correlation functionsG(r ,t) for L52048 at in-
termediate timet. ~a! G(r ,t) vs r at t52, 22, . . . ,210. ~b! The

rescaled height correlation functionG(r ,t)/r 2a8 against rescaled

distancer /t1/z8 with a851.33 andz854, the data collapse to a
single curve supporting Eq.~3!.
05160
e
size’’ of the system. We assume thatjs(L) follow a power-
law behavior as a function ofL with a new exponentd called
the ‘‘window exponent,’’

js~L !;Ld, ~15!

where d is less than or equal to 1. Since the correlati
length increases with a power lawt1/z8 until it saturates at a
value (ts)

1/z8 for times ts;Lz, we expect

js~L !;~ ts!
1/z8;~Lz!1/z8;Lz/z8, ~16!

i.e., d5z/z8. Sincea/a85z/z8 from Eq. ~14!, we have

d5a/a85z/z8. ~17!

This window exponentd characterizes the window size o
the system and is about 0.423 (d'0.561/1.33'1.69/4
'0.423) for our SRC model. With the saturate correlati
length of Eq.~15!, the height correlation functionG(r ,t) for
late times (t@Lz) can be written as

Gs~r !;r 2a8gs~r /Ld!. ~18!

When the rescaled saturate height correlationsGs(r )/r 2a8

are plotted against rescaled distancer /Ld with d50.423, all
data collapse to a single curve very well supporting the
sumptionjs;Ld. The saturate height correlation curvegs(x)

FIG. 3. The saturated height correlation functions.~a! Gs(r ) for
the systems of sizesL564,128, . . . ,1024 are shown in log scale
~b! The rescaled height correlationGs(r )/L2a against rescaled dis
tancer /Ld with a50.561 andd50.423.
5-3
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has the same shape asg(x) shown in Fig. 2~b!. Above scal-
ing form Gs(r ) of Eq. ~18! can be reexpressed as

Gs~r !;L2ag̃s~r /Ld! ~19!

with g̃s(x)5x2a8gs(x). Figure 3~b! shows the rescaled satu
rate height correlationsGs(r )/L2a for the systems of size
L564, 128, . . . ,1024. When they are plotted against re
caled distancer /Ld with d50.423, all data collapse to
single curve very well implying the scaling form of Eq.~19!.

Now the relationship between the roughness and its
namic exponents (a,z) and the wandering and its dynam
exponents (a8,z8) are clear. The exponent that describes
time dependence of the correlation length is the wande
dynamic exponentz8@j(t);t1/z8# but the correlation length
increases only up to the saturation correlation lengthjs(L),
which is not proportional to the system sizeL, but only to
Ld. Therefore, the mean square width for a system of sizL

reaches the steady state at the saturation timets;@js(L)#z8

;Ldz8;Lz and we havez5dz. At the same token, the rela
tionship betweena and a8 can be understood. The mea
square fluctuationW2(L,t) of the surface height is propor
tional to the spacial average ofG(r ,t). SinceGs(r ) in the
steady state has a length scaleLd, the square of the interfac
width in the steady stateWs

2(L) satisfiesWs
2(L);(Ld)2a8

;L2a and we havea5da8. The extremal height suppres
sion induces the window length scaleLd so thata is less
thana8.

There is another exponentk which governs the behavio
of G(r ,t) for r z8!t @9#. The scaling functiong(x) of Eq.
~11! does not approach a constant for small values ofx and,
in fact, obeys the power-law scalingx2k as shown in Fig.
2~b!. The least squares fitting ofg(x) for small x gives k
'0.87. Sinceg(x);x2k for small x, we expect

G~r ,t !;5
t2b for t!r z8

r 2a82ktk/z8 for r z8!t!Lz

r 2a82kLdk for t@Lz& r ,Ld

L2a for t@Lz& r .Ld.

~20!

If one defines ‘‘local wandering exponent’’a loc8 by

G~r ,t !;r 2a loc8 ~21!

for r !j @14# then

a loc8 5a82k/2'0.89. ~22!

The local wandering exponenta loc8 describes the local width
of the surface fluctuations over a size ofr, wherea loc8 <1.
The boundness ofa loc8 determining the short distance beha
ior of the correlation function follows from the triangle in
equality argument@15#.

The exponentk can be obtained from the smallx behav-
ior of g(x) in Fig. 2~b! @9#. Another way to estimatek is to
measure the mean square slope of the surfaceS2(t)
05160
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5G(1,t) for t,Lz since we haveS2(t);tk/z8 for those t
according to Eq.~20!. Figure 4 shows theS2(t) for t
51,2,4, . . . ,1024 with L52048. All the data fit well with
the form of

S2~ t !;t2«, ~23!

where« is a ‘‘step growth exponent’’ describing the increa
of the average step height as a function of time. From
least squares fit, we get

2«50.21760.002, ~24!

which means

k50.86860.008 ~25!

sincek52«z8. There is some debate about whether or nok
is an independent exponent@9,14,16,17#. In the RC model,
a loc8 is 1 andk is given by 2a822 @9,11#. However, in our
model, a loc8 is a82k/2 being less than 1. We thinkk is a
new exponent@9,14# which cannot be derived froma8, z8,
andd.

We have shown that the measurements ofa and z from
the surface width is not enough to to characterize a surf
morphology. To classify it completely, four independent e
ponentsa8, z8, d, andk are required. These four exponen
can be obtained by the measurement ofG(r ,t) as presented
in Eq. ~20!. Still G(r ,t) follows the scaling behavior of Eq
~3! with

j~ t !;H t1/z8 for t1/z!L

Ld for t1/z@L.
~26!

Exponenta8 and k are related to the asymptotic form o
g(x) in Eq. ~3!,

g~x!;H x2k for x!1

x22a8 for x@1.
~27!

All other exponentsa, z, b, «, anda loc8 can be derived from
the relationsa5a8d, z5z8d, b5a8/z8, 2«5k/z8, and
a loc8 5a82k/2.

In summary, we show that the usual roughness expon
a and its dynamic exponentz from the scaling behavior o

FIG. 4. The mean square slopeS2(t) as a function oft for the
system ofL52048. The least squares fit for the data with the fo
of S2(t);t2« gives 2«50.21760.002 which meansk52«z8
50.86860.008.
5-4



d
io

y
ce
d

t
th

but

the
our

be

0-

RESTRICTED CURVATURE MODEL WITH SUPPRESSION . . . PHYSICAL REVIEW E66, 051605 ~2002!
the surface width are not enough to characterize the mo
We introduce the restricted curvature model with suppress
of the global extremal heights and geta'0.561 andz
'1.69 from the surface widths. However, the correlation d
namic exponentz8'4, which describes the time dependen
of the correlation length, is not the same as the usual
namic exponentz extracted fromW. We emphasize thatz8 is
not a crossover exponent but a true exponent describing
correlation length. This unusual behavior also leads to
fact that the apparenta measured fromW(L,t) is different
from the wandering exponenta8 of the correlation. How-
ever, there is a relation among them,b5a/z5a8/z8. Appar-
e,
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ently different values betweenz and z8 are due to the fact
that the saturate correlation length is not the system size
is only proportional toLd with d'0.423 which is a new
exponent to describe the widow size. Just measuring
width alone is not enough to characterize the surface. F
independent exponentsa8, z8, k, andd are required to de-
scribe the scaling behavior of the surface and they can
determined from the height correlation function.

This work was supported by the KRF Grant No. 200
015- DP0108.
@1# F. Family and T. Vicsek,Dynamics of Fractal Surfaces~World
Scientific, Singapore, 1991!.

@2# J. Krug and H. Spohn, inSolids Far from Equilibrium, edited
by C. Godre`che ~Cambridge University Press, Cambridg
1992!, pp. 1–154.

@3# A. L. Barabási and H. Stanley,Fractal Concepts in Surface
Growth ~Cambridge University Press, New York, 1995!.

@4# J. Krug, Adv. Phys.46, 139 ~1997!.
@5# F. Family and T. Vicsek, J. Phys. A18, L75 ~1985!.
@6# F. Family, Physica A168, 561 ~1990!.
@7# J.M. Kim and J.M. Kosterlitz, Phys. Rev. Lett.62, 2289

~1989!.
@8# J.M. Kim, J.M. Kosterlitz, and T. Ala-Nissila, J. Phys. A24,

5569 ~1991!.
@9# S. Das Sarma, S.V. Ghaisas, and J.M. Kim, Phys. Rev. E49,
122 ~1994!.

@10# J.M. Kim and S. Das Sarma, Phys. Rev. E48, 2599~1993!.
@11# J. Amar, P.-M. Lam, and F. Family, Phys. Rev. E47, 3242

~1993!.
@12# J.D. Noh, H. Park, D. Kim, and M. den Nijs, Phys. Rev. E64,

046131~2001!.
@13# Y. Kim, S. Y. Yoon, and H. Park, Phys. Rev. E 040602~2002!.
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