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Restricted curvature model with suppression of extremal height
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A discrete growth model with a restricted curvature constraint is investigated by measuring both the surface
width and the height difference correlation function. In our model, where an extremal height is suppressed, the
surface widthW shows the roughness exponernt 0.561 and the dynamics exponemt 1.69 in one substrate
dimension. However the correlation function has an unusual scaling behavior and produces different wandering
exponenta’~1.33 and its dynamic exponemt~4. The discrepancy is due to the fact that the correlation
length increases with a power I’ until it reaches the value proportional itd at timets~L?, whereL is
the system size and is the “window exponent” satisfying the relatiofi=z/z' = a/a’. & is a new exponent
to characterize the window size of the system.
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Kinetic rOUghening of interfaces has been intenSivelyeB, the correlation |engt5 grows astllz’ at the beginning
Studied[l—‘[l for the last decade or so with the use of both and eventua”y saturates at the system Sjig],

analytical continuum growth equations and discrete atomistic

numerical simulations. Various dynamic growth universality

classes have been identified for growth models with each §(L,t)~Lg§(
universality class corresponding to a particular continuum

growth equation for the coarse-grained height variable

h(x,t), which describes the growing interface as a functionwhere the scaling forng(x) is x for x<1 and is constant
of the lateral surface coordinateand growth timet. Sub-  for x>1. In this case, it is easy to prove that the values of

stantial theoretical efforts have gone into classifying the uniandz’ are the same as andz of the surface width, respec-
versality classes of discrete growth modgls-4]. This is  tively.

(4)

tl/Z’ tl/Z’ for tl/Z’ <L
)

L for tY2's|,

typically done numerically in a rathemd hoc manner by Here we introduce a new model named “suppressed re-
measuring the simulated critical growth exponents of the disstricted curvature{SRQ model which showg’ #z. This is
crete models. a discrete growth model in restricted curvatyRC) con-

An interesting quantity of the dynamic growth process isstraint where an extremal height is suppressed. For complete-
the kinetically rough self-affine surface structure. Most re-ness, we explain the RC moddl0] briefly. The growth rule
cent work concentrates on studying the surface structure dif the equilibrium RC model is to randomly select a site on
the growth models, especially on determining the dynamica® one-dimensiondllD) substrate and then to take a random
critical exponents governing the surface fluctuations. The dyaction between deposition or evaporatierithin the solid on
namic scaling hypothesis is that in a finite system of laterapolid condition with equal probability, provided that the re-
sizeL, the variation or the mean square fluctuatib of the  striction on the local curvaturgv2h|=|h(x+1)+h(x—1)

surface height starting from a flat substrate scald$#% —2h(x)|=<2 is obeyed at both the selected site and the near-
est neighbor sites. If this RC condition is not satisfied, the
W2(L,t)~ L2 (t/L?), 1 corresponding deposition or evaporation event is forbidden.

(No relaxation or hopping of the deposited atom is allowed
where o and z are the “roughness” and “dynamic” expo- in the modell Thus, the model is analogous to the restricted
nents and the scaling functidg,(x) is x?# with the “growth  solid on solid mode]7,8] except that the restriction is on the
exponent” 8= a/z for x<1 and is constant fox>1. local curvaturev ?h rather than on the height difference. The

In addition to the surface width, there is another interestRC model is believed to belong to the fourth-order con-
ing quantity called the correlation function, which involves tinuum linear equation
the square of the height difference in distand&,8],

dh(x,t) 4
G(r,t)=([h(x,t)—h(x+r,)]?). 2 o~V hxH+n(x), )
It also shows a scaling behavior where thez(x,t) is an uncorrelated Gaussian noise. This
- equation can be solved exactly giving=«a'=3/2 andz
G(r,t)~r=* g(r/&(t)) B =z'=4,ie.,B=3/8[10,11.

The rule for the SRC model is the same as that of the RC
with the wandering exponent’ and a correlation lengt§f ~ model except a suppression for the global extremal heights.
~tY¥”' The correlation dynamic exponemt governs the All possible 1D RC configurations are allowed, but the glo-
correlation length along the surface. For conventional modbal maximum and minimum sites are biased to move to the
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direction of reducing the surface width. This model may fro T T T T
mimic the motion of a step in a vicinal surface where its :
motion is bounded in two neighboring steps. In equilibrium,

these dynamics produce an ensemble of RC surfaces with an
exponentially decreasing weight for increasing surface o
width. We obtain the roughness exponert0.561 and its
dynamic exponentz=1.69 by measuring surface width
W(a'~1.33L,t). However, the height correlation function
G(r,t) shows different scaling exponents ~1.33 andz’
~4. The implication of our observation is that the correla-

tion length& grows ag™ initially and saturates at the value
£~ L° with §=2/z'~0.423.

The dynamics and equilibrium properties of our model are
studied by Monte Carlo simulations with a Metropolis-type
algorithm. Starting from a flat surface, i.@(x,t)=0 for all
x=1,... L att=0, a site is chosen randomly. We try to add
or subtract the column height by 1 with the same probability
1/2. Unless the updated height introduces a new extremal 3
height (new maximum or minimury the new configuration - o=0.561 z=1.69
is accepted as long as it satisfies the RC condition. When it 10 = '1'(;_; = '1'(;.2' = '1'60' = o
brings a new extremal height, it increases the absolute sur- ‘L2
face widthWy,=hm&*—hM"4+-1, whereh™®*andh™" are
the maximum and minimum heights, respectively. In this FIG. 1. W?(L,t) for the systems of sizds=32,64 . . .,512.(a)
case, the acceptance probability of the new configuration ihe plot of W(L,t) as a function oft. (b) The scaling plot of
reduced by a factor op,,=<1. The equilibrium partition ~W?/L?* againstt/L* with «=0.561 andz=1.69 (3=0.332).
function of this model is a sum of the weightg,(,) Vabs,
over all possible RC surface configuratiori,13. In our z=alB=1.69+0.05. 9
simulation, we choose,,;= 1/2.

We first measure the mean square surface WL ,t)
defined by

w2/

Figure Xa) shows the mean square widt& as a func-
tion of t for the systems of sizes=32,64 ...,512. They
5 —_— increase algebraically initiallyt&L?* regime and saturate
WAL, =([h(t) —h(t)]), (6)  for t>LZ as expected from Eq1), where there is a satura-
o — tion timet,~ L% We check the validity of Eq1) by plotting
and check the validity of Eq1) for our model. HereA and  the scaled widthw2/L 2 against the scaled timgLZ As
(A) represent the spatial and the ensemble averages of shown in Fig. 1b), the scaled data collapse to a single curve
respectively. With the periodic boundary condition, the finite\ith ,=0.561 andz=1.69 supporting the scaling behavior
size effects are rather strong ¥ in the feasible system ¢ Eq. (1).
sizes. For the models with globally constrained dynamics, \ye now turn to the height correlation functi@{r,t) and
simulations on much larger systems are needed when thgnsider its scaling behavior of E(B). First, we focus on
periodic boundary conditions are applied even to get thgnhe short time (<L? behavior of the height correlation
roughness and its d_y'namlc exponents. Therefore, we use th&nction for a large system size. Figur@Rshows the height
free boundary conditioino RC constraint at the boundary o relations G(r,t) for a system ofL=2048 att=2,
and measur&V(L,1). o . 4,8,...1024. For a given time, they increase monotoni-
For the roughness_ exponemtdescribing the saturgltlon of cally with r up to the “correlation length”&(t) and then
the interface fluctuation, we use the relatf(L) ~L*“ for  remain almost constant far>£(t). The correlation length
the system sizek =32, 64, ... 1024 in the steady state re- () for a given timet is defined as the distance where
gime t>L* All data fit well with the form of Wi(L)  G(r t) becomes saturated. When the scaled height correla-

| 2« - > . -
L™, From the least squares fit, we get tions G(r,t)/rza are plotted against the scaled distance
a=0.561+0.005. (7)  r/tY with

To determine the growth exponefit we measur&V2(t) a'~1.33 and z'=~4.0 (10
as a function of time for the system of side=2048.

Through the relationV(t)~t? for early timet<L?, we a5 shown in Fig. @), the graphs for different times show

obtain perfect data collapse indicating the scaling behavior of Eq.
5=0.332+0.005 ® (3 with £(t)~tY for t<L?,
and therefore the dynamic exponent G(r,t)~r2'g(r/t¥"). (11
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FIG. 2. Height correlation function&(r,t) for L=2048 at in-
termediate timet. (@) G(r,t) vsr att=2, 22,...,2% (b) The FIG. 3. The saturated height correlation functiof@.G4(r) for
rescaled height correlation functio@(r,t)/rz‘*' against rescaled the systems of sizels=64,128 ...,1024 are shown in log scale.

distancer/t¥? with o’ =1.33 andz’ =4, the data collapse to a (b) The rescaled height correlati@®y(r)/L2* against rescaled dis-
Sing|e curve Supporting E(ﬂ3) tancer/l_lS with «=0.561 and5=0.423.

Note thatz' of the SRC model is the same as that of the RCSize” of the system. We assume tha(L) follow a power-
model buta’ is not. It seems that the suppression rule of thelaw behavior as a function df with a new exponené called

extremal height mainly affects the wandering exponeht  the “window exponent,”
As shown in Fig. 2a) G(r,t) is independent of for r
&(L)~L? (15)
> ¢&(t). Therefore, we expect s '
where § is less than or equal to 1. Since the correlation
length increases with a power laW?" until it saturates at a

for largex. [Smallx behavior ofg(x) will be discussed latgr.  value (g)# for timest,~L?, we expect
Equations(11) and(12) imply

g(x)~x"2e, (12)

E(L)~ (1) ~ (L) ~L77, (16)
G(r,t)~t22'/7 (13)

i.e., 6=z/7'. Sinceala’'=2/Z" from Eq.(14), we have
for r>¢(t). On the other handG(r,t) should be propor-
tional to t?# for smallt sinceW?(L,t) is so. Therefore, we
get the relation

o=ala'=2/7". 17

This window exponent characterizes the window size of
B=a'lz' = alz. (14 the system and is about 0.4235~0.561/1.33-1.69/4
~0.423) for our SRC model. With the saturate correlation
Even thoughe’ andz’ are different froma andz, the ratio Iength of Eq.(15), the height_ correlation functio&(r,t) for
a'lz' should be same ag/z. Our numerical data of’ and  late times (>L?) can be written as
z' satisfy the relation very well. )
We then move on to the long-time behavior®fr,t). We Gy(r)~r2gy(r/L?). (18
monitor the “saturate height correlation functiorGg(r)
=G(r,t>L7?) for the system sizels=64, 128, ...1024. As When the rescaled saturate height correlati@gxsr)/rza'
shown in Fig. 8a), G(r) increases only up to a length scale are plotted against rescaled distante? with §=0.423, all
&4(L) and then remains almost constant for £(L). We  data collapse to a single curve very well supporting the as-
call £(L) the “saturate correlation length” or the “window sumptioné~L?. The saturate height correlation curygx)
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has the same shape @&) shown in Fig. 2b). Above scal- ' ' ' P
ing form G4(r) of Eq. (18) can be reexpressed as 2t /4:’* ;
&
~ A
Gs(r)~ Lzags(r“—(s) (19 % 1k ,>i‘”+, ]
- 0g! _ L T Sgear® ]
with gg(x) =x“* g¢(x). Figure 3b) shows the rescaled satu- _,+/+ a=0.5833)
rate height correlation§(r)/L2* for the systems of sizes 0.5 [ . . 2e=02172)
L=64, 128,...1024. When they are plotted against res- 1 10 12 10°
caled distance/L° with §=0.423, all data collapse to a t

single curve very well implying the scaling form of EQ.9). .
Now the relationship between the roughness and its dy- FIG. 4. The mean square slofé(t) as a function of for the
namic exponentsd,z) and the wandering and its dynamic System oflL.=2048. The least squares fit for the data with the form
! 2 2e H — H _ '
exponents ¢’,z') are clear. The exponent that describes the®f S(D)~t™ gives 2=0.217-0.002 which meansk=2¢z

time dependence of the correlation length is the Wanderingzo'SGStO'OOS'

dynamic exponenz’[g(t)~t1’z'] but the correlation length
increases only up to the saturation correlation lergth ),
which is not proportional to the system sike but only to
L°. Therefore, the mean square width for a system of kize

reaches the steady state at the saturation timg £i(L)]%

~L% ~L7 and we have= 5z. At the same token, the rela-

tionship betweenr and o’ can be understood. The mean . o _
Square ﬂUCtUatiOMIZ(L,t) of the surface he|ght is propor- Wheres IS a “Step grOWth eXponent" de_SCI’IbIng_ the Increase

tional to the spacial average @&{(r,t). SinceG(r) in the of the average step height as a function of time. From the
steady state has a length schl® the square of the interface |€ast squares fit, we get

width in the steady stat&V2(L) satisfiesW2(L)~ (L?%)2%'

=G(1t) for t<LZ? since we haveS?(t)~t*?" for thoset
according to Eq.(20). Figure 4 shows theS?(t) for t
=1,2,4 ...,1024 withL=2048. All the data fit well with
the form of

S (t)~t2e, (23

- 2£=0.217+0.002, (29
~L2% and we havex= da’. The extremal height suppres-
sion induces the window length scal€¢ so thate is less  which means
thana'.
x=0.868+0.008 (25

There is another exponertwhich governs the behavior

of G(r,t) for rZ’ <t [9]. The scaling functiorg(x) of Eq.

(11) does not approach a constant for small values and,
in fact, obeys the power-law scaling “ as shown in Fig.
2(b). The least squares fitting af(x) for small x gives k

~0.87. Sinceg(x)~x" " for smallx, we expect

28 for t<r?

r2e’—elz' for 7 <t<| 2

G(r,t)~ (20

r2e’ =k 9k for t>LZ&r<L®

L2* for t>LZ&r>L°.

If one defines “local wandering exponent|,. by
G(r,t)~r2%oc (21)

for r< ¢ [14] then
ajy.=a' — kl2~0.89. (22

The local wandering exponert,,. describes the local width
of the surface fluctuations over a sizerpfwhere a, . <1.

The boundness af/,. determining the short distance behav-
ior of the correlation function follows from the triangle in-

equality argumenfl15].

The exponenic can be obtained from the smallbehav-
ior of g(x) in Fig. 2(b) [9]. Another way to estimate is to
measure the mean square slope of the surf&g)

sincek=2¢z'. There is some debate about whether ormot
is an independent exponel®,14,16,17. In the RC model,
@/ IS 1 andk is given by 2o’ —2 [9,11]. However, in our
model, /. is @’ — «/2 being less than 1. We think is a
new exponenf9,14] which cannot be derived from’, z’,
and é.

We have shown that the measurementsrodind z from
the surface width is not enough to to characterize a surface
morphology. To classify it completely, four independent ex-
ponentsa’, z', 8, andk are required. These four exponents
can be obtained by the measurementgf,t) as presented
in Eq. (20). Still G(r,t) follows the scaling behavior of Eq.
(3) with

1/7' t1/2< L

12|

for
&(t)~ [ (26)

L% for

Exponenta’ and « are related to the asymptotic form of
g(x) in Eq. (3),

X« for
9(x)~ x~ 2" for

x<1

(27)

x>1.

All other exponentsy, z, 8, €, anda/,, can be derived from
the relationsa=a'68, z=2'6, B=a'lZ', 2e=«/Z', and
alpe=a' — kl2.

In summary, we show that the usual roughness exponent
a and its dynamic exponertfrom the scaling behavior of
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the surface width are not enough to characterize the modeéntly different values betweenandz’ are due to the fact
We introduce the restricted curvature model with suppressiothat the saturate correlation length is not the system size but
of the global extremal heights and get~0.561 andz s only proportional toL® with §~0.423 which is a new
~1.69 from the surface widths. However, the correlation dy-exponent to describe the widow size. Just measuring the
namic exponent’ ~4, which describes the time dependencewidth alone is not enough to characterize the surface. Four
of the correlation length, is not the same as the usual dyindependent exponents', z’, x, andé are required to de-
namic exponent extracted fronW. We emphasize that' is  scribe the scaling behavior of the surface and they can be
not a crossover exponent but a true exponent describing thetermined from the height correlation function.

correlation length. This unusual behavior also leads to the

fact that the apparent measured fronW(L,t) is different

from the wandering exponent’ of the correlation. How- This work was supported by the KRF Grant No. 2000-
ever, there is a relation among the@w a/z=«a'/z". Appar-  015- DP0108.
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